Journal of Clinical Microbiology and Infectious Diseases (JCMID) 2022, Volume 2, Number 2: 35-38

Characteristics of candidiasis patients and Candida species antifungal sensitivity patterns in tertiary referral hospitals, Indonesia

Grisye Sahetapy¹, Fidriati Olivia Manongga¹, Ni Nyoman Sri Budayanti^{1,2,3*}, I Nengah Tony Rustawan⁴

ABSTRACT

Introduction: Candida species causes opportunistic infections, such as candidiasis, in patients with compromised immune systems and people receiving long-term antibiotics treatment. The use of antifungals causes resistance. Hence, it is necessary to know the antifungal sensitivity pattern of these organisms, which must be considered in definitive therapy. Therefore, this study aims to determine the characteristics of people with candidiasis and the antifungal sensitivity pattern of Candida species isolates in patients at Prof. Dr. IGNG Ngoerah Hospital, Denpasar, Indonesia.

Method: This is a retrospective descriptive study using secondary data from isolates of Candida species that were isolated and identified with the Vitek2® Compact system (bioMérieux, France). The experiment was carried out at the Clinical Microbiology laboratory of Prof. Dr. IGNG Ngoerah Hospital from February 1 to July 30, 2020.

Results: A total of 87 Candida species were isolated based on gender, where 55.2% and 44.8% were found in males and females, respectively. Furthermore, the most common isolate was Candida albicans, which accounts for 48.3% of the total microbes. Approximately 41.1% of Candida species were found in the sputum specimens. Furthermore, these species are 100% 98.9% and sensitive to Flucytosine and Micafungin, respectively, while 97.7% and 93.1% sensitivity was recorded for Caspofungin, Voriconazole, Amphotericin B and Fluconazole. Candida species were found in patients with diabetes mellitus and malignancy. They were also observed after using antibiotics for prophylactic, empirical and definitive therapy.

Conclusion: The dominant Candida species found was Candida albicans. Characteristics of candidiasis patients were found in people with diabetes mellitus, malignancy and the use of antibiotics in prophylactic, empirical and definitive therapy. Infections caused by these organisms need to be considered in administering antifungal therapy to prevent resistance.

Keywords: Candida species, Comorbid, Antibiotics, Antifungal Sensitivity. **Cite This Article:** Sahetapy, G., Manongga, F.O., Budayanti, N.N.S., Rustawan, I.N.T. 2022. Characteristics of candidiasis patients and *Candida* species antifungal sensitivity patterns in tertiary referral hospitals, Indonesia. *Journal of Clinical Microbiology and Infectious Diseases* 2(2): 35-38

¹Study Program of Clinical Microbiology, Faculty of Medicine, Universitas Udayana, Indonesia; ²Departement of Clinical Microbiology, Faculty of Medicine, Universitas Udayana, Indonesia;

Udayana, Indonesia; ³Udayana University Hospital, Jimbaran, Bali, Indonesia;

4Clinical Microbiology Laboratory RSUP Prof. Dr. dr. I.G.N.G Ngoerah, Bali;

*Corresponding to: Ni Nyoman Sri Budayanti; Study Program of Clinical Microbiology, Faculty of Medicine, Universitas Udayana, Indonesia; budayantinns@unud.ac.id

Received: 2022-10-19 Accepted: 2022-11-06 Published: 2022-12-09

INTRODUCTION

Candida Candidiasis caused by a common secondary infection immunocompromised people, and its synonyms include candidosis, moniliasis, or thrush. Furthermore, it is often found in the oral cavity, digestive tractus or other body parts. Candida is in the form of yeast.1 Candida species, such as Cryptococcus, Aspergillus and Pneumocystis, are the major cause of fungal infections and global health problems.^{2,3} Candidiasis can occur locally as well as spread hematogenously. The localized form often occurs as erythema and white plaque in moist skin folds (diaper rash) or on mucosal surfaces (oral thrush). The disease also occurs in the deep tissues, and it is very common among immunocompromised individuals.⁴ Primary candidiasis can manifest in airway aspiration and secondary infection due to hematogenous spread.⁵

Candida species is a normal flora in the human body found on the skin, mucous membranes and digestive tract, but can cause superficial and deep fungal infections.⁶ The fungi can also be found on the ground. Candida spp. are often found in human and animals.⁷ Most of diseases caused by Candida spp. are found throughout the world in the mucosa and body system. They can be divided into superficial, cutaneous, mucosal, and systemic infections.⁸

In a previous study in China, antifungal sensitivity patterns found *Candida* spp. IncludingIncluding

Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata sensu stricto, Candida guilliermondii, Candida pelliculosa, Candida krusei, Candida lusitaniae, Candida haemulonii, were discovered. In Indonesia study found an antifungal sensitivity pattern, the isolates of Candida spp, including C. parapsilosis, C. tropicalis, C. albicans, C. glabrata, Candida famata, C. haemulonii, C. krusei and C. pelliculosa, were discovered. O

Candida species causes opportunistic infections in patients with compromised immune systems and people receiving long-term antibiotics treatment.¹¹ These conditions occur in individuals due to comorbid diseases include Human Immunodeficiency Virus (HIV),

organ transplant, malignancies and immunosuppressant treatment patients, ¹² blood malignancy, acute necrotizing pancreatitis, liver, heart and kidney transplantation, also influenced by environmental factors, such as habitats and the presence of colonization, ¹³ Diabetes Mellitus (DM), bronchial asthma, other malignancy, Chronic Obstructive Pulmonary Disease (COPD), pregnancy, ¹⁴ prolonged use of antibiotics and the presence of other secondary infections. ¹⁵

The clinical diagnosis of this condition is non-specific because it is caused by different organisms, comorbid disease or complications from treatment. Furthermore, it depends on an objective assessment of the response to antifungal treatment and the specimens collection of specimens conforms to the microbiological laboratory and test procedures standards.¹²

Treatment of fungal infections includes the use of azole, polyenes, echinocandin and flucytosine. The use of antifungals infection therapy needs to be considered to prevent resistance due to their limited antifungal drugs. Based on the description, this study aims to determine the isolates of Candida spp., their antifungal sensitivity pattern and characteristics of candidiasis in patients at Prof. Dr. IGNG Ngoerah Hospital, Denpasar.

METHODS

This is a descriptive retrospective study with secondary data, carried out at the Clinical Microbiology Installation of Prof. Dr. IGNG Ngoerah Hospital, Denpasar. Isolates of Candida spp. were obtained from clinical specimens of patients. The secondary data include sputum samples, tube sputum, urine, and blood. The specimen culture was performed on a Sabouraud Dextrose Agar (SDA) with incubation at 37°C. Subsequently, the isolates were identified and tested for antifungal sensitivity using an automatic Vitek 2 Compact machine (Biomereux, France).18 The results were secondary data collected for six months from February 1 to August 31, 2020. The other data include gender, comorbidities and duration of antibiotics use. 14,15 Inclusive criteria were the results of antifungal sensitivity tests on Candida spp., completed with flucytosine,

fluconazole, voriconazole, amphotericin B, caspofungin and micafungin. The exclusion criteria include incomplete antifungal sensitivity tests and double specimens. After collecting secondary data, they were statistically analyzed using SPSS version 25.0. The data analysis results are presented in the form of narratives, figures and tables.

RESULTS

From February to December 2020, a total of 87 Candida spp., which met the inclusion criteria were isolated. The characteristics of study subjects were determined by grouping the test organism. Based on sex, 48 males and 39 females accounted for 55.2% and 44.8% of the

population, respectively. Candida species were found in sputum specimens 41.1%, sputum Endotracheal Tube (ETT) 14.9%, urine 29.9%, blood 11.5% and others samples 2.3%, respectively. *Candida albicans was* the most common species found in approximately 48.3% of the isolates, as shown in Figure 1.

The result showed that 42.5% of candidiasis characteristics were found in patients with comorbid diseases, including DM, malignancy, followed by DM and Hypertensive Heart Disease (HHD). A total of 80 (92%) respondents used antibiotics in prophylactic, empirical and definitive therapy, as shown in Table 1.

In the antifungal susceptibility test, 100% and 98.9% of *Candida* spp. were

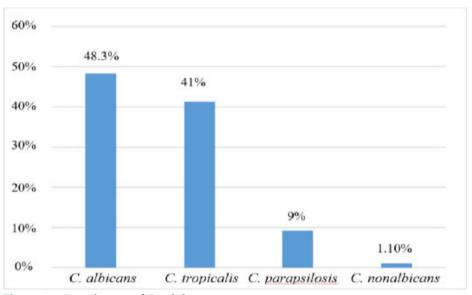


Figure 1. Distribution of Candida species.

Table 1. Characteristics of Study Subjects Based on Comorbidities and Use of Antibiotics.

Comorbid DM 12 (13.8) Malignancy (Acute Myeloid Leukemia, malignant lymphoma, 7 (8) cervix cancer, rhabdomyosarcoma, nasopharynx cancer) DM and HHD 5 (5.7) HHD 4 (4.6) DM and Chronic Kidney Disease (CKD) 3 (3.4) CKD 3 (3.4) HIV 1 (1.1)
Malignancy (Acute Myeloid Leukemia, malignant lymphoma, cervix cancer, rhabdomyosarcoma, nasopharynx cancer) DM and HHD 5 (5.7) HHD 4 (4.6) DM and Chronic Kidney Disease (CKD) 3 (3.4) CKD 3 (3.4) HIV 1 (1.1)
cervix cancer, rhabdomyosarcoma, nasopharynx cancer) DM and HHD 5 (5.7) HHD 4 (4.6) DM and Chronic Kidney Disease (CKD) 3 (3.4) CKD 3 (3.4) HIV 1 (1.1)
DM and HHD 5 (5.7) HHD 4 (4.6) DM and Chronic Kidney Disease (CKD) 3 (3.4) CKD 3 (3.4) HIV 1 (1.1)
HHD 4 (4.6) DM and Chronic Kidney Disease (CKD) 3 (3.4) CKD 3 (3.4) HIV 1 (1.1)
DM and Chronic Kidney Disease (CKD) 3 (3.4) CKD 3 (3.4) HIV 1 (1.1)
CKD 3 (3.4) HIV 1 (1.1)
HIV 1 (1.1)
` '
11 10: 1
Hormonal Disorder 1 (1.1)
Duration of use antibiotics
1-2.5 days 39 (44.8)
3-5 days 15 (17.2)
≥7 days 26 (29.9)

Table 2. Candida Species Sensitivity to Antifungals.

Antifungals	R (%)	S (%)
Fluconazole	6.9	93.1
Voriconazole	2.3	97.7
Micafungin	1.1	98.9
Caspofungin	2.3	97.7
Amphotericin B	2.3	97.7
Flucytosine	0	100

sensitive to flucytosine and micafungin, respectively, as shown in Table 2.

DISCUSSION

In this study, 48.3% of the isolates were C. albicans, which according to Montes et al, where 41.2% the most reported and cause human infection.¹⁸ Furthermore, Suhartono et al who recorded 30.88%.19 The result showed that 41.4% of isolates found in the sputum specimen was Candida spp., according to Masuoka et al with the prevalence of 40.6%.²⁰ C. albicans colonizes the respiratory tract in patients with pneumonia²¹ and causes candidiasis with the prevalence of 52%.²² The type of sample needed for microbiological testing is very important, which can cause errors in the interpretation of culture results as well as misdiagnosis.23

In this study, Candida spp. was often isolated in patients with comorbidities, namely DM, malignancy, HHD, CKD and HIV. The presence of diabetes mellitus with uncontrolled glucose levels is a carbon source that plays an important role in the growth of these species.24,25 Diabetes mellitus changes in the immune system, which make its patients more susceptible to fungal infections.²⁶ Candida species was also found in patients with comorbidities including malignancies, such as Acute Myeloid Leukemia (AML), malignant lymphoma, cervical cancer, rhabdomyosarcoma and nasopharynx cancer. Candida species in people with malignancies, such as oral cavity carcinomas, stomach and esophageal carcinomas, lymphoma malignant, cervical cancer, Chronic Myeloid Leukemia (CML), bone tumors, bladder cancer and colon cancer. The occurrence of infection along with malignancy causes invasive infection and candidemia.²⁷ Furthermore, Candida spp. isolates in patients with other malignancies, including head,

neck and blood cancer.²⁸ In patients with CKD, uremia is characterized by immunodepression²⁹ and decreased macrophage activity for phagocytosis.³⁰ In human immunodeficiency virus patients, Candida spp. colonize the oral cavity and significantly cause candidiasis.³¹

This study revealed their presence after the use of antibiotics for 1-2,5 days as prophylactic, 3-5 days as empirical and >7 days as definitive therapies. Exposure to antibiotics is a risk factor for Candida infection.32 Antibiotics can inhibit the growth of bacteria, but they do not affect the growth of Candida. Treatment of bacterial infections with antibiotics induced the growth of C. albicans, which is a normal flora, hence, it was present in the culture results.33 The duration of administration depends on the ability of the drug to kill the causal bacteria based on the patient's clinical diagnosis. When there is no clinical improvement, it is necessary to re-evaluate the use of antibiotics and the accuracy in diagnosing infection.34

Treatment of candidiasis depends on the availability of antifungal drugs. The sensitivity test of Candida spp. to flucytosine showed that it was 100% sensitive, and this was lower than the result of Terças et al, 92% sensitive.35 Flucytosine is rarely used in Indonesia compared to fluconazole, which is very common in therapy. In this study, the sensitivity of fluconazole was 93.1%, and this was similar to the result of Wang et al more than 90% sensitive.³⁶ Meanwhile, previous study reported a lower sensitivity of 71.5%. Candida infection treatment is often carried out based on the type and site infections as well as pattern of antifungal sensitivity of Candida spp.6 Patients with DM and HIV are at high risk for azole resistance, which are the main choice. The host immune system and antifungal drugs play an important role in successfully treating fungal infections. Furthermore,

these species have also acquired resistance to echinocandin, flucytosine and polyenes. Azole group cannot be used for *Candida* spp. in people with HIV usually receive long term therapy, which can cause resistance.³⁷

Intrinsically resistance Candida spp. can cause resistance to fluconazole.³⁸ Overexpression of efflux pump leading to azole resistance found in *C. albicans.*³⁹ Candida albicans isolates resistance to echinocandins can occurred point mutations FKS1 and FKS2 with decreased glucan synthesis.⁴⁰ Candida parapsilosis isolates resistance to fluconazole could be caused by overexpression of CDR1, MDR1, ERG11.⁴¹ Candida tropicalis isolates resistance to fluconazole could be due to expression of the ERG11 gene.⁴² Point mutations in ERG3 and ERG6 can cause polyenes resistance.⁴⁰

limitations of this study, type of Candida species isolates was not described for respective sensitivity to antifungals. Therefore, further study is needed with a larger number of isolates.

CONCLUSION

In this study, the isolates of *Candida* spp. were frequently found in the sputum specimens. Candidiasis patients' characteristics were observed after using prophylactic, empiric, and definitive antibiotics. Furthermore, *Candida* spp. is often found in patients with diabetes and malignancy. Antifungals sensitivity test include flucytosine, followed by voriconazole, micafungin, caspofungin, amphotericinB and fluconazole, which can still be used in definitive therapy at tertiary referral hospitals.

DISCLOSURES

Funding

This research was conducted without the involvement of a third party.

Conflict of Interest

All authors declare there is no conflict of interest related to this publication.

Author Contribution

All authors contributed equally in this study.

Ethics Approval

The ethical commission had ethically approved this study of the Faculty of Medicine, Universitas Udayana, Bali, Indonesia.

ACKNOWLEDGMENTS

The authors would like to thank those who helped to complete this study

REFERENCES

- Vanani atefeh R, Mahdavinia M, Kalantari H, Khosmood S, Shirani M. Antifungal effect of the effect of Securigera securidaca L. vaginal gel on *Candida* species. 2019;5(3):31–5.
- Saccente M, Woods GL. Clinical and Laboratory Update on Blastomycosis. 2010;23(2):367–81.
- 3. Kauffman CA. Histoplasmosis: a Clinical and Laboratory Update. 2007;20(1):115–32.
- Ryan K.J GRS, editor. Medical Microbiology. 6th Edition. McGraw-Hill; 2014.
- Maertens JA, Marr KA. Diagnosis of Fungal Infections. Burke A. Cunha, editor. Informa Healthcare; 2017.
- Khadka S, Sherchand JB, Pokhrel BM, Parajuli K, Mishra SK. Isolation, speciation and antifungal susceptibility testing of Candida isolates from various clinical specimens at a tertiary care hospital, Nepal. BMC Res Notes. 2017;1–5.
- Limon JJ, Skalski JH, Underhill DM. Review Commensal Fungi in Health and Disease. Cell Host Microbe. 2017;22(2):156–65. Available from: doi.org/10.1016/j.chom.2017.07.002.
- Vandeputte P, Ferrari S, Coste AT. Antifungal Resistance and New Strategies to Control Fungal Infections. 2012;2012.
- Xiao M, Chen SC, Kong F, Xu X, Yan L, Kong H, et al. Distribution and Antifungal Susceptibility of *Candida* Species Causing Candidemia in China: An Update From the CHIEF-NET Study. 2020;221(Suppl 2):139–47.
- Wulandari A, Hapsari R, Sari D. Antifungal susceptibility profile of Candida spp. causing candidemia in an Indonesian tertiary hospital. 2021;1(2):28–32.
- Walsh TH, Hayden RT, Larone DH. Larone's Medically Important Fungi. A Guide to Identification. 6th edition. Walsh TH, Hayden RT, Larone DH, editors. ASM Press; 2018.
- Richardson MD, Warnock DW. Fungal Infection. Diagnosis and Management. 3rd edition. Blackwell; 2003.
- Lilienfeld-toal M Von, Wagener J, Einsele H, Cornely OA, Kurzai O. New Treatments to Meet New Challenges. 2019;
- 14. Jangla SM, Naidu R, Patel SC. Speciation and antifungal susceptibility testing of Candida isolates in various clinical samples in a tertiary care hospital in Mumbai. 2018;09(03):106–11.

- Sajjan AC, Mahalakshmi V V, Hajare D. Prevalence and Antifungal Susceptibility of Candida Species Isolated From Patients Attending Tertiary Care Hospital. 2014;13(5):44–9.
- 16. Pianalto KM, Alspaugh JA. New Horizons in Antifungal Therapy. 2016;10–2.
- 17. Scorzoni L, Paula ACA De, Marcos CM, Assato PA, Melo WCMA De, Oliveira HC De, et al. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. 2017;8(January):1–23.
- 18. Suhartono S, Mahdani W, Mathura A, Rusmana I. *Candida* Species Distribution of Clinical Specimens in Banda Aceh , Indonesia. 2020;12(2):262–7.
- Montes K, Ortiz B, Galindo C, Figueroa I, Braham S, Fontecha G. Identification of Candida Species from Clinical Samples in a Honduran Tertiary Hospital. 2019;1–11.
- Masuoka J. Surface Glycans of Candida albicans and Other Pathogenic Fungi: Physiological Roles, Clinical Uses, and Experimental Challenges. 2004;17(2):281–310.
- Yu Y, Li J, Wang S, Gao Y, Shen H, Lu L. Effect of *Candida albicans* bronchial colonization on hospital acquired bacterial pneumonia in patients with systemic lupus erythematosus. 2019;7(22).
- Devi LS, Maheshwari M. Speciation of Candida Species Isolated From Clinical Specimens by Using Chrom Agar and Conventional Methods. 2018;(May).
- Ciurea CN, Santini A, Mare AD, Kosovski IB, Toma F, Vintila C, et al. Candida spp. in Lower Respiratory Tract Secretions – A Ten Years Retrospective Study. 2021;7(3):217–26.
- Rodrigues CF, Rodrigues ME. Candida spp. Infections in Patients with Diabetes Mellitus. 2019
- Man A, Ciurea CN, Pasaroiu D, Savin A, Toma F, Solar F, et al. New perspectives on the nutritional factors influencing growth rate of *Candida albicans* in diabetics. An in vitro study. 2017;112(September):587–92.
- 26. Harpf V, Kenno S, Rambach G, Fleischer V, Parth N, Weichenberger CX, et al. Influence of Glucose on *Candida albicans* and the Relevance of the Complement FH-Binding Molecule Hgt1 in a Murine Model of Candidiasis. 2022.
- Jayachandran AL, Katragadda R, Thyagarajan R, Vajravelu L, Manikesi S, Kaliappan S, et al. Oral Candidiasis among Cancer Patients Attending a Tertiary Care Hospital in Chennai, South India: An Evaluation of Clinicomycological Association and Antifungal Susceptibility Pattern. 2016;2016:1–6.
- Schelenz S, Abdallah S, Gray G, Stubbings H, Gow I, Baker P, et al. Epidemiology of oral yeast colonization and infection in patients with hematological malignancies, head neck and solid tumors. 2011;83–9.
- 29. Godoy JSR, Souza P, Nakamura SS, Yamada SS, Shinobu-Mesquita C, Pieralisi N, et al.

- Colonization of the oral cavity by yeasts in patients with chronic renal failure undergoing hemodialysis. 2012.
- Vaziri ND, Madeleine V, Crum A, Norris K. Effect of Uremia on Structure and Function of Immune System. J Ren Nutr. 2012;22(1):149– 56. Available from: doi.org/10.1053/j. jrn.2011.10.020
- Vidya KM, Rao UK, Nittayananta W, Liu H, Owotade FJ. Oral mycoses and other opportunistic infections in HIV: therapy and emerging problems a workshop report. 2016;22:158–65.
- 32. Ben-Ami R, Elshtain-pops K, Krieger M, Oren I, Bishara J, Dan M, et al. Antibiotic Exposure as a Risk Factor for Fluconazole Resistant. 2012;2518–23.
- Seelig MS. The Role of Antibiotics of Candida in the Pathogenesis. 1966.
- 34. Permenkes. Pedoman Penggunaan Antibiotik. Peraturan Menteri Kesehatan Nomor 28 Tahun 2021. 2021;(1116):1–98.
- 35. Terças ALG, Marques SG, Moffa EB, Alves MB, Azevedo CMPS de, Siqueira WL, et al. Antifungal Drug Susceptibility of Candida Species Isolated from HIV Positive Patients Recruited at a Public Hospital in São Luís,. 2017;8(March):1–8.
- Wang H, Xu Y, Hsueh P. Epidemiology of candidemia and antifungal susceptibility in invasive *Candida* species in the Asia Pacific region. 2016;11:1461–77.
- 37. Bhattacharya S, Sae-tia S, Fries BC. Candidiasis and Mechanisms of Antifungal Resistance. 2020;(Cdc):1–19.
- Santos GCDO, Vasconcelos CC, Lopes AJO, Rocha FMG, Monteiro CDA. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. 2018;9(July):1–23.
- Madero-lópez L, Espinel-ingroff A. Revista Iberoamericana de Micología of invasive fungal diseases: a review of the literature (2005-2009). Rev Iberoam Micol. 2009;26(1):15–22. Available from: http://dx.doi.org/10.1016/ S1130-1406(09)70004-X
- Spampinato C, Leonardi D. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative Antifungal Agents. 2013;2013.
- 41. Souza ACR, Fuchs B, Pinhati HMS, Siqueira RA, Hagen F, Meis JF, et al. *Candida parapsilosis* Resistance to Fluconazole: Molecular Mechanisms and In Vivo Impact in Infected Galleria mellonella Larvae. 2015;59(10):6581–7
- 42. Jiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, et al. Mechanisms of azole resistance in 52 clinical isolates of *Candida tropicalis* in China. 2013; (December 2012):778–85.

This work is licensed under a Creative Commons Attribution