Journal of Clinical Microbiology and Infectious Diseases (*JCMID*) 2022, Volume 2, Number 1: 6-10

Published By: the Indonesian Society for Clinical Microbiology

Mutant vary region of *pncA* gene sequence of pyrazinamide resistance among multidrug resistant *Mycobacterium tuberculosis* isolates

Titiek Sulistyowati^{1*}, Soedarsono², Ni Made Mertaniasih^{3,4}

¹Surabaya Health Laboratory Center, National Reference Laboratory of *Mycobacterium tuberculosis* culture and drug susceptibility testing phenotypically, Indonesia. ²Department of Pulmonology and Medical Respirology, Faculty of Medicine, Universitas Airlangga / Dr. Soetomo General Hospital, Surabaya, Indonesia. ³Department of Microbiology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo hospital, Surabaya, Indonesia. ⁴Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.

*Corresponding to:
Titiek Sulistyowati, Surabaya Health
Laboratory Center, National Reference
Laboratory of *Mycobacterium tuberculosis*culture and drug susceptibility testing
phenotypically, Indonesia. Email:
titiek_sulistyowati@yahoo.com

Received: 2022-03-10 Accepted: 2022-05-30 Published: 2022-06-01

ABSTRACT

Introduction: Pyrazinamide (PZA) is one of the potent front-line drugs that act as antituberculosis (antiTB) for nonresistant or resistant *Mycobacterium tuberculosis*. Mutation of *pncA* gene is considered to be main target of PZA resistance mechanism. This study aims to determine the mutant gene sequences, location, and correlation of *pncA* gene mutations with PZA resistance in MDR *Mycobacterium tuberculosis* as a base for the rapid molecular examination.

Objective: This study aims to determine the mutant gene sequence and location of *pncA* gene with PZA resistance in multidrug resistant (MDR) *Mycobacterium tuberculosis* need a rapid molecular examination for consideration of MDR TB therapy management in Indonesia.

Methods: MDR *Mycobacterium tuberculosis* were identified and tested for PZA resistance with BACTEC MGIT 960 as a gold standard, followed by DNA extraction, PCR amplification and *pncA* gene sequencing.

Results: An analysis of 561 bp sequence of nucleotides was performed to determine type and location of mutations. A total of 35 isolates of this study showed 14 isolates of pncA gene mutation (40%), and revealed in 13 resistant and 1 sensitive isolate. The correlation analysis of pncA gene mutation to PZA resistance was significant (p = 0,003 and r = 0,452). Mutations in 3 (three) specific regions of pncA gene are 1 isolate at codons 51-76, 1 isolate at codons 130-142, and 3 isolates at codons 163-180.

Conclusion: Types of mutations in the *pncA* gene include substitution of 11 isolates, insertion of 2 isolates, and no deletion. Insertion of 178 CGCGCTGGAGGAGAGGCGCCCCCCC and multiple mutations in one isolate.

Keywords: mutant region vary of pncA gene, PZA resistance, MDR-TB

Cite This Article: Sulistyowati, T., Soedarsono., Mertaniasih, N.M. 2022. Mutant vary region of *pncA* gene sequence of pyrazinamide resistance among multidrug resistant *Mycobacterium tuberculosis* isolates . *Journal of Clinical Microbiology and Infectious Diseases* 2(1): 6-10.

INTRODUCTION

Tuberculosis (TB) is caused by acid fast bacilli, *Mycobacterium tuberculosis* that still remains a major problem globally and has been associated with significant morbidity and mortality. Global TB report estimated that one million people are new TB cases yearly and 1,5 million people are death because of TB infections.¹ The emergence of Multiple Drug Resistant (MDR) TB is a challenge to solve currently.^{2,3}

Pyrazinamide (PZA) is still used in Indonesia as a first line key agent in the effective treatment of TB, including MDR TB cases³. Good bactericidal activities especially for intra-celluler organisms are unique characteristic of PZA. It is able to kill semi-dormant bacteria that are in an acidic environment during acute inflammation.⁴⁷ Several countries showed

a higher prevalence of PZA resistance among MDR TB patients i.e. Papua New Guinea 10%, Turkey 25%, Thailand 49%, Central Africa 50%, South Africa 52%, Japan 53%, Taiwan 55%, Pakistan 77%, and South Korea 85%. The PZA susceptibility test is phenotypically difficult because it requires an acidic environment for the activation of PZA, while acidic conditions can kill *Mycobacterium tuberculosiss*. 9

PZA is a prodrug that enters *Mycobacterium tuberculosis* cell in a passive diffusion and converted into active form of pyrazinoic acid (POA) by the intra cellular bacterial enzyme pyrazinamidase (PZase). The POAs will be excreted by defective efflux and protonated at an acidic environment. The protonated POA is reabsorbed and accumulated into the cell. It makes cytoplasmic acidification

and affects membrane transport. Effective pumping functions become inefficient and bacterial cells break down.¹⁰

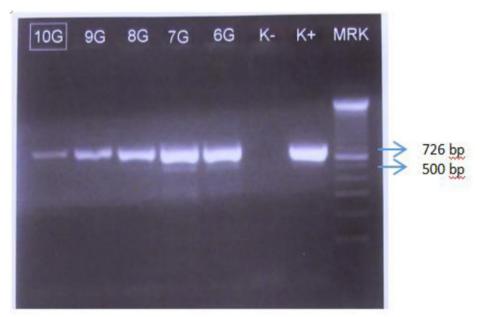
The PZase enzymes are present in the cytoplasm and encoded by the *pncA* genes. The absence of PZase activities are common in clinically isolates with PZA resistant. Mutation of the *pncA* gene is considered a major cause of PZA resistance in *Mycobacterium tuberculosis*. Several studies have reported that the correlation between resistant PZA and *pncA* gene mutations varies considerably around 41-80%. 12-15

This study aims to determine the mutant gene sequences, location, and correlation of *pncA* gene mutations with PZA resistance in MDR *Mycobacterium tuberculosis* as a base for the rapid molecular examination. Early detection

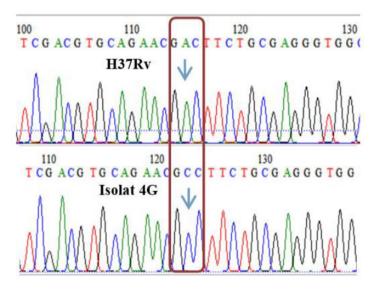
of PZA resistance in *Mycobacterium tuberculosis* isolates is crucial for appropriate treatment to prevent the development of further resistance and the spread of resistant strains.

METHODS

A total of 35 *Mycobacterium tuberculosis* clinical isolates were recovered from MDR TB patients that stored in Surabaya Health Laboratory Center, Indonesia as National Referral Laboratory of *Mycobacterium tuberculosis* culture and drug susceptibility testing phenotypically.


First-line drugs (rifampicin, isoniazid, ethambutol, streptomycin, and pirazinamid) susceptibility tests were determined in a BACTEC MGIT 960 system (Becton Dickinson Microbiology Systems, Sparks, Md.) in accordance with the manufacturer's instructions.16 Identification of Mycobacterium tuberculosis isolates was confirmed by serpentine cord microscopically with Ziehl Neelsen stain and MPT64 rapid test (SD Bioline Kit, Standard Diagnostics, Inc., Korea).

Mycobacterial DNAs were extracted from *Lowenstein Jensen* medium by standardized boiling method. One loopful of *Mycobacterium tuberculosis* colonies were suspended in 250 μl of TE buffer (10mM Tris HCl, 1 mM EDTA, pH 8,0) and boiled in 100°C for 10 minutes. The suspension was centrifuged at 13000 rpm for 2 min. The supernatant was taken as 100 μl and stored at -20 °C until used as DNA template for amplification.¹⁷


For analysis of the presence of the *pncA* gene mutation, a 561-bp fragment was amplified using forward primer (5' GTCGGTCATGTTCGCGATCG 3') was located 105 bp upstream of the start codon and and reverse primer (5'GCTTTGCGGCGAGCGCTCCA 3') was located 60 bp downstream of the stop codon as recently described. 18-21

The PCR mix composition consisted of Taq DNA polymerase, dNTPs, MgCl2, and buffer reaction (pH 8.5) (Promega, USA). PCR was performed in a total volume of 50 μ l consisted of 25 μ l of master mix, 2,5 ml of each primer (10 μ M forward and 10 μ M reverse primers), 2 μ l of crude DNA and 18 μ l of ddH₂O.

The PCR reactions were performed

Figure 1. Visualization of *pncA* gene on 2% agarose gel. MRK, 100 bp DNA marker, K+, positive control of PCR (*Mycobacterium tuberculosis* H37Rv, K-, negative control of PCR (mixed PCR reagent without DNA), 6G-10G, sample isolates with pncA gene positive.

Figure 2. Electropherograms of *pncA* gene mutation. The 4G isolate showed substitution A become C.

under the following conditions: initial denaturation at 95°C for 2 min; denaturation at 95°C for 40 sec; annealing at 58,6°C for 30 sec; 35 cycles were performed and followed by final elongation at 72°C for 3 min. The expected size of the pncA PCR products were 726 bp. PCR products were analysed by 2% agarose gel (Figure 1) and subsequently they were purified for sequencing with

forward or reverse primer.

The sequence analysing were compared with the sequence of Mycobacterium tuberculosis H37Rv pncA with *BioEdit sequence alignment editor* program (http://www.mbio.ncsu. edu/bioedit/bioedit. html) (Figure 2).

The correlation analysis of mutations in the *pncA* gene with PZA resistance in clinical isolates of *Mycobacterium*

tuberculosis MDR was determined by 2x2 chi square table analysis (contingency coefficient or Pearson's coefficient).

RESULTS

Of the 35 isolates studied, data on age and sex showed that 22 (62,86%) were males. The male:female ratio was 1,69:1. Most of the isolates (48,57%) were between 45-64 years old.

Of the 35 isolates tested, 22 isolates (62,86%) were PZA resistance by $BACTEC\ MGIT\ 960$ as gold standard. The proportion of pncA gene mutations from a total of 35 $Mycobacterium\ tuberculosis$ MDR isolates of this study based on PCR and sequencing was 40% (n = 14).

A total of 14 pncA gene mutation isolates of this study showed 13 resistant and 1 sensitive isolate. The correlation analysis of pncA gene mutation to PZA resistance was significant in **Table 1** (p = 0,003 and r = 0,452).

Mutations in 3 (three) specific regions of *pncA* gene are 1 isolate at codons 51-76, 1 isolate at codons 130-142, and 3 isolates at codons 163-180. Types of mutations in the *pncA* gene include substitution of 11 isolates, insertion of 2 isolates, and no deletion (**Table 2**).

DISCUSSION

PZA was an important first line anti TB drug due to bactericidal activity especially in dormant bacilli.4,7 Several studies showed that PZA can reduce duration of therapy and prevent relapse cases.9 Emergence of MDR TB become complex issues due to ineffectiveness of treatment.1 In high burden countries, PZA resistance have high prevalence especially in MDR TB cases (ranging between 10%-85%). The reason could be caused by widespread use of PZA with no drug susceptibility test or false-positive results. PZA susceptibility test should be performed but it has technical challenges phenotypically.8 The difficulties are acidic condition to change PZA to active form, the other side show precisely the acidic atmosphere can kill bacteria.9

This study showed that the proportion of PZA resistance in MDR *Mycobacterium tuberculosis* was high enough (62,86%) by *BACTEC MGIT 960* as gold standard

Table 1. Correlation analysis of *pncA* gene mutations with PZA resistance in clinical isolates of Mycobacterium tuberculosis MDR.

Mutation		pncA gene		Correlation	P value
		No mutation		coefficient	r value
PZA resistance	Resistant	13	9	- 0.452	0,003
	Sensitive	1	12	- 0,452	

Table 2. Characterization of *pncA* gene mutation.

No	No lab	Mutation type	Nucleotide changes	Frequency
1	2G	Insertion	CGCGCTGGAGGAGATGC GCACCGCC pada 535	1
2	4G	Substitution	A35C	1
3	9G	Substitution	A139C	1
4	14G	Substitution	C500T	1
		Substitution	C404G	
		Substitution	T408G	
		Substitution	G438T	
		Substitution	G443T	
		Substitution	C456G	
5	15G	Substitution	G461T	1
		Substitution	C509A	
		Substitution	C514A	
		Substitution	G519C	
		Substitution	C533A	
		Substitution	G541T	
6	17G	Substitution	C297G	1
7	18G	Insertion	T287	1
8	19G	Substitution	G485A	1
9	20G	Substitution	A29C	1
10	21G	Substitution	G71A	1
11	28G	Substitution	A226C	1
12	30G	Substitution	T545C	1
13	33G	Substitution	G41A	1
14	34G	Substitution	G41A	1

test. The results were correlated with those obtained from systematic review and meta-analysis by Whitfield et al in 2015 that showed PZA resistances were between 52.3%-68.6% among MDR TB cases.²² Beside usage and technical issues, the other causes of increasing PZA resistance in MDR TB cases are higher frequency of spontaneous mutation rates (1x10⁻⁵) than the other first line anti TB drug like rifampicin/RIF (2,9 x 10-9 - 2,4 x 10⁻⁷) and isoniazid/INH (2,56 x 10⁻⁸).²³ The other theory by Stehr et al showed that MDR Mycobacterium tuberculosis may express extremely high NAD+ levels for survival and inactivation of the drug. The accumulation of the nicotinamide produced may hamper PZA or POA.24

PZA must be changed pyrazinamidase (PZase) enzymes that encoded by pncA gene to become active form, pyrazinoic acid (POA).10 Several studies showed that pncA mutation has correlation as major mechanism of PZA resistance.11 The correlation is ranging between 41-80%.25 This study represents that the proportion of pncA mutations were 40% (14/35). Singh et al showed that the frequency of pncA mutation was varies (41%-97%).26 The correlation between pncA mutation with PZA resistance in this present study are significant (p = 0,003 and r = 0.452).

The *rpsA* and *panD* gene have been found as other target of PZA resistance. Shi *et al* in 2011 suggested that *rpsA*

genes encode ribosomal protein S1 and can affect POA binding.²⁷ Zhang *et al* represent *panD* gene as a new target that have role in panthotenate and CoA biosynthesis for survival and pathogenesis of *Mycobacterium tuberculosis in vivo*.¹¹ This mechanism explained widely variety of correlation between *pncA* gene mutation with PZA resistance.

Du *et al* developed a model of theoretical homology structure based on nicotinamidase / PZAse from *Pyrococcus horikoshii* as template.²⁸ Zimic *et al* developed an enhanced theoretical model available in Protein Data Bank (GDP ID: 1X8A).

According to both models, the secondary structure of PZAse includes 4 alpha helix (α1-α4), 6 beta strands (β1-β6), and 10 loops (L1-L10).29 This structure has catalytic center includes active site (residues D8, A134, and C138) and metal coordination site (residues D49, H51 and H71). Mutation at these positions are predicted to cause loss of enzyme activity. This region is found in codon 3-17, 61-85, and 132-142.18 But, Li et al in 2016 studied that 3 specific region of pncA gene mutation (codon 51-76, 130-142, and 163-180) have been proven to be the part of active site and metal coordination site. The region has correlated with high level of PZA resistance.30

This study represented that *pncA* mutation have widely diverse and scattered distribution. The proportion of *pncA* mutation in 3 specific regions (codon 51-76, 130-142, and 163-180) was 18,2% and the others were in other codons. Mutations that do not occur in the active site, but close enough to them, the characteristics of the catalytic group will be disrupted. Mutations may not completely eradicate biochemical reactions, but alter reaction kinetics.³¹

The Thr47Ala (T47A) mutations in this study showed sensitive PZA results with *BACTEC MGIT 960*. The possibility of this clinical isolate has demonstrated low-level resistance, but not detectable phenotypically.³⁰

Insertion of 178 CGCGCT GGAGGAGATGCGCACCGCC and multiple mutations in one isolate have never occurred before. This study requires further investigation to identify others

PZA resistance mechanisms.

This study examined only a few isolates so information is still limited. Furthermore, this study can be continued with a number of samples that can represent the conclusions. These data also do not involve clinical and patient response to pyrazinamide therapy for resistance.

CONCLUSION

The proportion of PZA resistance in MDR *Mycobacterium tuberculosis* clinical isolates is high. There was moderate level of correlation between *pncA* gene mutations and PZA resistance from MDR *Mycobacterium tuberculosis* clinical isolates. Phenotype susceptibility test is required for the detection of PZA resistance. A rapid molecular examination might be used for consideration of MDR TB infection management therapy in Indonesia or the other high burden countries.

CONFLICTS OF INTEREST

The authors have none to declare.

FUNDING

This study was self-funded without any contribution from third party.

AUTHOR CONTRIBUTION

All authors contributed equally in the writing of this article

ETHIC APPROVAL

This study had been ethically approved by ethical commission.

ACKNOWLEDGEMENT

We would like to thank all staff of BBLK Surabaya, Dinas Kesehatan Provinsi Jawa Timur, Substansi TB Kementerian Kesehatan for all contributors in this research.

REFERENCES

- World Health Organization. Global Tuberculosis Report 2015. WHO. Geneva. Switzerland 2015.
- 2. World Health Organization. Global

- Tuberculosis Report 2014. WHO. Geneva. Switzerland 2014.
- Kemenkes RI. Pedoman Nasional Pengendalian Tuberkulosis. Kemenkes RI. Jakarta 2014.
- Mitchison DA. The action of antituberculosis drugs in short course chemotherapy. *Tubercle* 1985: 66: 219-225.
- Zhang Y, Permar S, Sun Z. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J Med Microbiol. 2002; 51: 42–49.
- Hu Y, Coates AR, Mitchison DA. Sterilising action of pyrazinamide in models of dormant and rifampicin-tolerant *Mycobacterium* tuberculosis. Int J Tuberc Lung Dis. 2006; 10: 317–322.
- Kolyva AS, Karakousis PC. Old and new TB drugs: mechanisms of action and resistance. InTech 2012:209-32
- Zhang Y, Chang K, Leung C, Yew W, Gicquel G, Fallows D, et al. ZS-MDR-TB versus ZR-MDR-TB: improving treatment of MDR-TB by identifying pyrazinamide susceptibility. *Emerg Microbes Infect* (Natur Publishing Group) 2012; 1: e5 doi:10.1038/emi.2012.1018.
- Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 2003; 7:6–21.
- Palomino JC, Martin A. Drug resistance mechanisms in *Mycobacterium tuberculosis*. *Antibiotics* 2014; 3: 317-340.
- Zhang Y, Shi W, Zhang W, Mitchison D. Mechanisms of pyrazinamide action and resistance. ASMscience.org/Microbiol Spectrum 2014
- Bishop KS, Blumberg L, Trollip AP, Smith AN, Roux L, York DF, et al. Characterisation of the pncA gene in Mycobacterium tuberculosis isolates from Gauteng, South Africa. Int J Tuberc Lung Dis 2001; 5:952–957.
- 13. Huang TS, Lee SS, Tu HZ, Huang WK, Chen YS, Huang CK, et al. Correlation between pyrazinamide activity and *pncA* mutations in *Mycobacterium tuberculosis* isolates in Taiwan. *Antimicrob. Agents Chemother* 2003; 47:3672–
- Miyagi C, Yamane N, Yogesh B, Ano H, Takashima T. Genetic and phenotypic characterization of pyrazinamide-resistant Mycobacterium tuberculosis complex isolates in Japan. Diagn Microbiol Infect Dis 2004; 48: 111– 116.
- Pandey S, Newton S, Upton A, Roberts S, Drinkovic D. Characterisation of pncA mutations in clinical Mycobacterium tuberculosis isolates in New Zealand. Pathology 2009; 41: 582–584.
- Clinical Laboratory Standards Institute (CLSI). M24-A2: Susceptibility testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard. 2nd ed. 72 p. 2011.
- Cheunoy W, Prammananan T, Chaiprasert A, Foongladda S. Comparative evaluation of polymerase chain reaction and restriction enzyme analysis: two amplified targets, hsp65 and rpoB, for identification of cultured mycobacteria. Diagn Microbiol and Infect Dis 2005; 51:165-171.
- 18. Scorpio A, Lindholm- Levy P, Heifets L, Gilman

- R, Siddiqi S, Cynamon M. Characterization of *pncA* mutations in pyrazinamide resistant *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother* 1997; 41:540–543.
- Mestdagh M, Fonteyne PA, Realini L, Rossau R, Jannes G, Mijs W, et al. Relationship between pyrazinamide resistance, loss of pyrazinamidase activity, and mutations in the pncA locus in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1999: 43: 2317-2319.
- Shenai S, Rodrigues C, Sadani M, Sukhadia N, Mehta A. Comparison of phenotypic and genotypic methods for pyrazinamide susceptibility testing. *Indian J Tuberculosis* 2009; 56:82–90.
- Zhang H, Bi LJ, Li CY, Sun ZG, Deng JY, Zhang XE. Mutations found in the pncA gene of Mycobacterium tuberculosis in clinical pyrazinamide-resistant isolates from a local region of China. The Journal of International Medical Research 2009; 37: 1430 – 1435.
- Whitfield MG, Soeters HM, Warren RM, York T, Sampson SL, Streicher EM, et al. A global perspective on pyrazinamide resistance: systematic review and meta analysis. *PLoS ONE* 2015; 10 (7): e0133869.
- 23. McGrath M, van Pittius NCG, van Heiden PD,

- Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in *Mycobacterium tuberculosis*. J *Antimicrob Chemother* 2014; 69: 292–302.
- 24. Stehr M, Elamin AA, Singh M. Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria. *Expert Rev. Anti Infect. Ther. Early* online 2015; 1–11.
- Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew W, et al. Pyrazinamide resistance in Mycobacterium tuberculosis: 4 review and update. Advances in Medical Sciences 2016; 61(1): 63–71.
- Singh P, Mishra AK, Malonia SK, Chauhan DS, Sharma VD, Venkatesan K, et al. The paradox of pyrazinamide: an update on the molecular mechanisms of pyrazinamide resistance in mycobacteria. *J commun dis* 2006; 38 (3):288-298.
- Shi W, Zhang X, Jiang X, Yuan H, Lee JS, Barry 3rd CE, et al. Pyrazinamide inhibits transtranslation in Mycobacterium tuberculosis. Science 2011; 333: 1630–1632.
- Du X, Wang W, Kim R, Yakota H, Nguyen H, Kim SH. Crystal structure and mechanism of catalysis of a pyrazinamidase from *Pyrococcus horikoshii*. *Biochemistry* 2001; 40:14166–14172.
- 29. Zimic M, Sheen P, Quiliano M, Gutierrez A,

- Gilman RH. Peruvian and globally reported amino acid substitutions on the *Mycobacterium tuberculosis* pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance. Infect Genet Evol 2009; 10 (2):346-349.
- Li D, Hu Y, Werngren J, Mansjo M, Zheng X, Drobniewski F, et al. Emergence and genetic characteristics of pyrazinamide resistant tuberculosis in China, a multi-center study. Antimicrob Agents chemoter 2016; 60(9):5159-5166.
- Zhang Z, Miteva MA, Wang L, Alexov E. Analyzing effects of naturally occuring missense mutations. Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine vol 2012. 15 pages.

This work is licensed under a Creative Commons Attribution